0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessWork function is a fundamental property of a material's surface. It is playing an ever more important role in engineering new energy materials and efficient energy devices, especially in the field of photovoltaic devices, catalysis, semiconductor heterojunctions, nanotechnology, and electrochemistry. Using ambient pressure X-ray photoelectron spectroscopy (APXPS), we have measured the binding energies of core level photoelectrons of Ar gas in the vicinity of several reference materials with known work functions (Au(111), Pt(111), graphite) and PbS nanoparticles. We demonstrate an unambiguously negative correlation between the work functions of reference samples and the binding energies of Ar 2p core level photoelectrons detected from the Ar gas near the sample surface region. Using this experimentally determined linear relationship between the surface work function and Ar gas core level photoelectron binding energy, we can measure the surface work function of different materials under different gas environments. To demonstrate the potential applications of this ambient pressure XPS technique in nanotechnology and solar energy research, we investigate the work functions of PbS nanoparticles with various capping ligands: methoxide, mercaptopropionic acid, and ethanedithiol. Significant Fermi level position changes are observed for PbS nanoparticles when the nanoparticle size and capping ligands are varied. The corresponding changes in the valence band maximum illustrate that an efficient quantum dot solar cell design has to take into account the electrochemical effect of the capping ligand as well.
Stephanus Axnanda, Marcus Scheele, Ethan J Crumlin, Baohua Mao, Rui Chang, Sana Rani, Mohamed Faiz, Sui‐Dong Wang, Paul Alivisatos, Zhi Liu (2013). Direct Work Function Measurement by Gas Phase Photoelectron Spectroscopy and Its Application on PbS Nanoparticles. , 13(12), DOI: https://doi.org/10.1021/nl403524a.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2013
Authors
10
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/nl403524a
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access