0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe greatest source of loss in conventional single-junction photovoltaic cells is their inefficient utilization of the energy contained in the full spectrum of sunlight. To overcome this deficiency, we propose a multijunction system that laterally splits the solar spectrum onto a planar array of single-junction cells with different band gaps. As a first demonstration, we designed, fabricated, and characterized dispersive diffractive optics that spatially separated the visible (360–760 nm) and near-infrared (760–1100 nm) bands of sunlight in the far field. Inverse electromagnetic design was used to optimize the surface texture of the thin diffractive phase element. An optimized thin film fabricated by femtosecond two-photon absorption 3D direct laser writing shows an average splitting ratio of 69.5% between the visible and near-infrared light over the 380–970 nm range at normal incidence. The splitting efficiency is predicted to be 80.4% assuming a structure without fabrication errors. Spectral-splitting action is observed within an angular range of ±1° from normal incidence. Further design optimization and fabrication improvements can increase the splitting efficiency under direct sunlight, increase the tolerance to angular errors, allow for a more compact geometry, and ultimately incorporate a greater number of photovoltaic band gaps.
T. Patrick Xiao, Osman S. Cifci, Samarth Bhargava, Hao Chen, Timo Gissibl, Weijun Zhou, Harald Gießen, Kimani C. Toussaint, Eli Yablonovitch, Paul V. Braun (2016). Diffractive Spectral-Splitting Optical Element Designed by Adjoint-Based Electromagnetic Optimization and Fabricated by Femtosecond 3D Direct Laser Writing. , 3(5), DOI: https://doi.org/10.1021/acsphotonics.6b00066.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2016
Authors
10
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/acsphotonics.6b00066
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access