Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Dietary intake of household cadmium-contaminated rice caused genome-wide DNA methylation changes on gene/hubs related to metabolic disorders and cancers

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2023

Dietary intake of household cadmium-contaminated rice caused genome-wide DNA methylation changes on gene/hubs related to metabolic disorders and cancers

0 Datasets

0 Files

English
2023
Environmental Pollution
Vol 327
DOI: 10.1016/j.envpol.2023.121553

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Fang-jie Zhao
Fang-jie Zhao

Nanjing Agricultural University

Verified
Shengnan Zhang
Wan‐Ying Xie
Zhiqiang Zhai
+3 more

Abstract

Cadmium (Cd) contamination in food has raised broad concerns in food safety and human health. The toxicity of Cd to animals/humans have been widely reported, yet little is known about the health risk of dietary Cd intake at the epigenetic level. Here, we investigated the effect of a household Cd-contaminated rice (Cd-rice) on genome-wide DNA methylation (DNAm) changes in the model mouse. Feeding Cd-rice increased kidney Cd and urinary Cd concentrations compared with the Control rice (low-Cd rice), whereas supplementation of ethylenediamine tetraacetic acid iron sodium salt (NaFeEDTA) in the diet significantly increased urinary Cd and consequently decreased kidney Cd concentrations. Genome-wide DNAm sequencing revealed that dietary Cd-rice exposure caused the differentially methylated sites (DMSs), which were mainly located in the promoter (32.5%), downstream (32.5%), and intron (26.1%) regions of genes. Notably, Cd-rice exposure induced hypermethylation at the promoter sites of genes Caspase-8 and interleukin-1β (Il-1β), and consequently, their expressions were down-regulated. The two genes are critical in apoptosis and inflammation, respectively. In contrast, Cd-rice induced hypomethylation of the gene midline 1 (Mid1), which is vital to neurodevelopment. Furthermore, ‘pathways in cancer’ was significantly enriched as the leading canonical pathway. Supplementation of NaFeEDTA partly alleviated the toxic symptoms and DNAm alternations induced by Cd-rice exposure. These results highlight the broad effects of elevated dietary Cd intake on the level of DNAm, providing epigenetic evidence on the specific endpoints of health risks induced by Cd-rice exposure.

How to cite this publication

Shengnan Zhang, Wan‐Ying Xie, Zhiqiang Zhai, Chuan Chen, Fang-jie Zhao, Peng Wang (2023). Dietary intake of household cadmium-contaminated rice caused genome-wide DNA methylation changes on gene/hubs related to metabolic disorders and cancers. Environmental Pollution, 327, pp. 121553-121553, DOI: 10.1016/j.envpol.2023.121553.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

Environmental Pollution

DOI

10.1016/j.envpol.2023.121553

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access