0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessColorectal cancer is the second leading cause of cancer-related deaths worldwide. To prevent deaths, regular screenings with histopathological analysis of colorectal tissue should be performed. A diagnostic aid system could reduce the time required by medical professionals, and provide an initial approach to the final diagnosis. In this study, we analyze low computational custom architectures, based on Convolutional Neural Networks, which can serve as high-accuracy binary classifiers for colorectal cancer screening using histopathological images. For this purpose, we carry out an optimization process to obtain the best performance model in terms of effectiveness as a classifier and computational cost by reducing the number of parameters. Subsequently, we compare the results obtained with previous work in the same field. Cross-validation reveals a high robustness of the models as classifiers, yielding superior accuracy outcomes of 99.4 ± 0.58% and 93.2 ± 1.46% for the lighter model. The classifiers achieved an accuracy exceeding 99% on the test subset using low-resolution images and a significantly reduced layer count, with images sized at 11% of those used in previous studies. Consequently, we estimate a projected reduction of up to 50% in computational costs compared to the most lightweight model proposed in the existing literature.
Álvaro Gago-Fabero, Luis Muñoz-Saavedra, Javier Civit-Masot, Francisco Luna-Perejón, José María Rodríguez Corral, Manuel Jesus Dominguez Morales (2024). Diagnosis Aid System for Colorectal Cancer Using Low Computational Cost Deep Learning Architectures. , 13(12), DOI: https://doi.org/10.3390/electronics13122248.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.3390/electronics13122248
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access