0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe seismic design of super-tall buildings has become an important research topic in earthquake engineering. Limited research has been conducted on the distribution of plastic energy dissipation among the different components of super-tall buildings when subjected to strong earthquakes. A simplified two-dimensional (2D) nonlinear model is developed based on the analysis of Shanghai Tower, an actual super-tall building with a total height of 632m. The accuracy of the simplified model is validated by comparing the results from modal analyses, and static and dynamic time-history analyses of the refined finite element model. Then, the proposed simplified model is used to determine the plastic energy dissipation of different components and the distribution of the total plastic energy dissipation over the height of the Shanghai Tower under different seismic intensities. The analysis indicates that the total plastic energy is mainly concentrated in the upper four Zones of the building and that the outrigger is the major plastic energy dissipation component in the Shanghai Tower.
Xiao Lu, Xinzheng Lu, Halil Sezen, Lieping Ye (2014). Development of a simplified model and seismic energy dissipation in a super-tall building. Engineering Structures, 67, pp. 109-122, DOI: 10.1016/j.engstruct.2014.02.017.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2014
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Engineering Structures
DOI
10.1016/j.engstruct.2014.02.017
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access