0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessStimulation of muscarinic receptors in bovine tracheal smooth muscle (BTSM) causes a sustained increase in muscle tone, but a transient increase in the second messenger Ins(1,4,5)P3. To examine whether this brief increase in Ins(1,4,5)P3 mass results from transient formation or is due to agonist-stimulation of Ins(1,4,5)P3 metabolism, we have studied the relationship between mass changes in PtdIns(4,5)P2 and Ins(1,4,5)P3 accumulation, and changes in [3H]InsP3, [3H]PtdIns, [3H]PtdInsP1 and [3H]PtdInsP2 in carbachol-stimulated myo-[3H]inositol-prelabelled BTSM slices. Carbachol (0.1 mM) caused a rapid transient increase in Ins(1,4,5)P3 concentration (basal, 12.9 +/- 0.8 pmol/mg of protein; 5 s carbachol treatment, 27.1 +/- 1.5 pmol/mg of protein), with values returning to basal levels by 30 s, but a sustained accumulation of total [3H]InsP3s, with [3H]Ins(1,3,4)P3 being the predominant isomer present at later time points. In contrast, PtdIns(4,5)P2 mass, determined by radioreceptor assay of Ins(1,4,5)P3 in desalted alkaline hydrolysates of acidified chloroform/methanol tissue extracts, declined rapidly (basal, 941 +/- 22 pmol/mg of protein; 120 s carbachol, 365 +/- 22 pmol/mg of protein; t1/2 14 s) and remained at this new steady-state level for at least 20 min in the continued presence of carbachol. Addition of 10 microM-atropine 2 min after carbachol caused a prompt return of PtdIns(4,5)P2 concentration to prestimulated values (t1/2 210 s). Ongoing resynthesis of PtdIns(4,5)P2 after carbachol stimulation was demonstrated in [3H]inositol-labelled tissue by observing a persistent increase in the specific radioactivity of [3H]PtdInsP2, shown to be exclusively [3H]PtdIns(4,5)P2, over a 10 min period. These findings strongly suggest the occurrence of persistent receptor-mediated increases in PtdIns(4,5)P2 hydrolysis and Ins(1,4,5)P3 formation which, in conjunction with the transient accumulation of Ins(1,4,5)P3 observed, provide evidence that regulation of the metabolism of Ins(1,4,5)P3 is a major determinant of Ins(1,4,5)P3 concentration in this tissue under agonist-stimulated conditions.
Edwin R. Chilvers, Ian H. Batty, R. A. John Challiss, Peter J Barnes, Stefan R. Nahorski (1991). Determination of mass changes in phosphatidylinositol 4,5-bisphosphate and evidence for agonist-stimulated metabolism of inositol 1,4,5-trisphosphate in airway smooth muscle. , 275(2), DOI: https://doi.org/10.1042/bj2750373.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
1991
Authors
5
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1042/bj2750373
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access