0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAngiogenesis and lymphangiogenesis, the formation of new blood or lymphatic vessels, respectively, from preexisting vasculature is essential during embryonic development, but also occurs during tissue repair and in pathological conditions (cancer; ocular disease; ischemic, infectious and inflammatory disorders), which are all characterized to a certain extent by inflammatory conditions. Hence, a rapid, inexpensive, feasible / technically easy, reliable assay of inflammation-induced (lymph-)angiogenesis is highly valuable. In this context, the corneal thermal cauterization assay in mice is a simple, low-cost, reproducible, insightful and labor-saving assay to gauge the role of inflammation in angiogenesis and lymphangiogenesis. However, to the best of our knowledge, there is no standardized protocol to perform this assay. Here, we provide a step-by-step description of the model's procedures, which include:•The thermal cauterization of the corneas,•Enucleation and dissection of the corneas,•Subsequent immunofluorescence staining of the neovasculature, and morphometric analysis. We also discuss ethical considerations and aspects related to animal welfare guidelines. Altogether, this paper will help to increase the reproducibility of the corneal thermal cauterization model and facilitate its use for angiogenesis and lymphangiogenesis research.
Anh-Co Khanh Truong, Lisa M. Becker, Nora Dekoning, Ann Bouché, Koen Veys, Baharak Hosseinkhani, Mieke Dewerchin, Guy Eelen, Peter Carmeliet (2023). Detailed protocol for a corneal thermal cauterization-based (lymph-)angiogenesis assay in mice. , 11, DOI: https://doi.org/10.1016/j.mex.2023.102446.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
9
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1016/j.mex.2023.102446
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access