0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAlthough there are many studies on code optimization of the joint source-channel coding (JSCC) system based on double protograph low-density parity-check codes with the joint belief propagation (JBP) algorithm, but it is still unknown whether the source code and channel code (as a code pair) can perform well when the joint shuffled scheduling decoding (JSSD) algorithm is adopted. In this letter, two decoding threshold analysis algorithms, including joint shuffled protograph extrinsic information transfer (PEXIT) and source shuffled PEXIT algorithm, are proposed to calculate joint/source decoding thresholds for this system with the JSSD algorithm. With the proposed algorithms, it is found that the optimized code pairs for this system with the JBP algorithm may not perform well with the JSSD algorithm, implying that code pair with the JSSD algorithm needs to be redesigned. Then, a two-stage optimized framework is proposed to design the code pair for this system with the JSSD algorithm. Simulations and decoding threshold analysis both show that the proposed code pair for this system with the JSSD algorithm can obtain lower error floor and better waterfall performance than the existing code pairs.
Zhiping Xu, Lin Wang, Shaohua Hong, Guanrong Chen (2021). Design of Code Pair for Protograph-LDPC Codes-Based JSCC System With Joint Shuffled Scheduling Decoding Algorithm. IEEE Communications Letters, 25(12), pp. 3770-3774, DOI: 10.1109/lcomm.2021.3112717.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
IEEE Communications Letters
DOI
10.1109/lcomm.2021.3112717
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access