Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Density-functional theory vs density-functional fits: The best of both

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2022

Density-functional theory vs density-functional fits: The best of both

0 Datasets

0 Files

en
2022
Vol 157 (23)
Vol. 157
DOI: 10.1063/5.0128996

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Axel D Becke
Axel D Becke

Dalhousie University

Verified

Abstract

In a recent paper [A. D. Becke, J. Chem. Phys. 156, 214101 (2022)], we compared two Kohn–Sham density functionals based on physical modeling and theory with the best density-functional power series fits in the literature. With only a handful of physically motivated pre-factors, our functionals matched, and even slightly exceeded, the performance of the best power-series functionals on the general main group thermochemistry, kinetics, and noncovalent interactions (GMTKN55) chemical database of Goerigk et al. [Phys. Chem. Chem. Phys. 19, 32184 (2017)]. This begs the question: how much can their performance be improved by adding power-series terms of our own? We address this question in the present work. First, we describe a series expansion variable that we believe contains more local physics than any other variable considered to date. Then we undertake modest, one-dimensional fits to the GMTKN55 data with our theory-based functional corrected by power-series exchange and dynamical correlation terms. We settle on 12 power-series terms (plus six parent terms) and achieve the lowest GMTKN55 “WTMAD2” error yet reported, by a substantial margin, for a hybrid Kohn–Sham density functional. The new functional is called “B22plus.”

How to cite this publication

Axel D Becke (2022). Density-functional theory vs density-functional fits: The best of both. , 157(23), DOI: https://doi.org/10.1063/5.0128996.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

1

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1063/5.0128996

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access