Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Degradation of methyl orange by dielectric films based on contact-electro-catalysis

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2023

Degradation of methyl orange by dielectric films based on contact-electro-catalysis

0 Datasets

0 Files

en
2023
Vol 15 (13)
Vol. 15
DOI: 10.1039/d2nr06783h

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Xin Yi Zhao
Yusen Su
Andy Berbille
+2 more

Abstract

Contact-electro-catalysis (CEC) has been recently proposed for the effective degradation of methyl orange, but the reactivity of catalysts in the CEC process needs further investigation. Here, we have used dielectric films, such as fluorinated ethylene propylene (FEP), modified by inductively coupled plasma (ICP) etching with argon, to replace the previously employed micro-powder due to their potential scalability, facile recycling process, and possible lower generation of secondary pollution. It has been found that ICP creates cone-like micro/nano structures on the surface, and thus changes the contact angle and specific surface area. The value of the contact angle varies non-linearly with etching time and attains a maximum after 60 seconds of etching. Concurrently, an increased electron transfer is observed, as well as an enhanced degradation efficiency, thus suggesting a special role of the surface structure. Finally, KPFM measurements show a lower electron affinity at the summit of the nanocones. This observation suggests that the structures are endowed with higher charge transfer ability. In addition, this film-based CEC has been observed in several polymer materials, such as PET, PTFE, and PVC. We view this work as a stepping stone to develop CEC into scalable applications, based on film technologies.

How to cite this publication

Xin Yi Zhao, Yusen Su, Andy Berbille, Zhong Lin Wang, Wei Tang (2023). Degradation of methyl orange by dielectric films based on contact-electro-catalysis. , 15(13), DOI: https://doi.org/10.1039/d2nr06783h.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

5

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1039/d2nr06783h

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access