0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessComprehensive climate change mitigation necessitates soil carbon (C) storage in cultivated terrestrial ecosystems. Deep-rooted perennial crops may help to turn agricultural soils into efficient C sinks, especially in deeper soil layers. Here, we compared C allocation and potential stabilization to 150 cm depth from two functionally distinct deep-rooted perennials, i.e., lucerne ( Medicago sativa L.) and intermediate wheatgrass (kernza; Thinopyrum intermedium ), representing legume and non-legume crops, respectively. Belowground C input and stabilization was decoupled from nitrogen (N) fertilizer rate in kernza (100 and 200 kg mineral N ha −1 ), with no direct link between increasing mineral N fertilization, rhizodeposited C, and microbial C stabilization. Further, both crops displayed a high ability to bring C to deeper soil layers and remarkably, the N 2 -fixing lucerne showed greater potential to induce microbial C stabilization than the non-legume kernza. Lucerne stimulated greater microbial biomass and abundance of N cycling genes in rhizosphere soil, likely linked to greater amino acid rhizodeposition, hence underlining the importance of coupled C and N for microbial C stabilization efficiency. Inclusion of legumes in perennial cropping systems is not only key for improved productivity at low fertilizer N inputs, but also appears critical for enhancing soil C stabilization, in particular in N limited deep subsoils.
Leanne Peixoto, Jørgen E. Olesen, Lars Elsgaard, Kirsten Lønne Enggrob, Callum C. Banfield, Michaela Dippold, Mette Haubjerg Nicolaisen, Frederik Bak, Huadong Zang, Dorte Bodin Dresbøll, Kristian Thorup‐Kristensen, Jim Rasmussen (2022). Deep-rooted perennial crops differ in capacity to stabilize C inputs in deep soil layers. Scientific Reports, 12(1), DOI: 10.1038/s41598-022-09737-1.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
12
Datasets
0
Total Files
0
Language
English
Journal
Scientific Reports
DOI
10.1038/s41598-022-09737-1
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access