Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Deep Binding of Language Model Virtual Personas: a Study on Approximating Political Partisan Misperceptions

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Preprint
en
2025

Deep Binding of Language Model Virtual Personas: a Study on Approximating Political Partisan Misperceptions

0 Datasets

0 Files

en
2025
DOI: 10.48550/arxiv.2504.11673arxiv.org/abs/2504.11673

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
John F Canny
John F Canny

University of California, Berkeley

Verified
M.-S. Kang
Suhong Moon
Seung Soo Lee
+2 more

Abstract

Large language models (LLMs) are increasingly capable of simulating human behavior, offering cost-effective ways to estimate user responses to various surveys and polls. However, the questions in these surveys usually reflect socially understood attitudes: the patterns of attitudes of old/young, liberal/conservative, as understood by both members and non-members of those groups. It is not clear whether the LLM binding is \emph{deep}, meaning the LLM answers as a member of a particular in-group would, or \emph{shallow}, meaning the LLM responds as an out-group member believes an in-group member would. To explore this difference, we use questions that expose known in-group/out-group biases. This level of fidelity is critical for applying LLMs to various political science studies, including timely topics on polarization dynamics, inter-group conflict, and democratic backsliding. To this end, we propose a novel methodology for constructing virtual personas with synthetic user "backstories" generated as extended, multi-turn interview transcripts. This approach is justified by the theory of \emph{narrative identity} which argues that personality at the highest level is \emph{constructed} from self-narratives. Our generated backstories are longer, rich in detail, and consistent in authentically describing a singular individual, compared to previous methods. We show that virtual personas conditioned on our backstories closely replicate human response distributions (up to an 87% improvement as measured by Wasserstein Distance) and produce effect sizes that closely match those observed in the original studies of in-group/out-group biases. Altogether, our work extends the applicability of LLMs beyond estimating socially understood responses, enabling their use in a broader range of human studies.

How to cite this publication

M.-S. Kang, Suhong Moon, Seung Soo Lee, Ayush Raj, John F Canny (2025). Deep Binding of Language Model Virtual Personas: a Study on Approximating Political Partisan Misperceptions. , DOI: https://doi.org/10.48550/arxiv.2504.11673.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Preprint

Year

2025

Authors

5

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.48550/arxiv.2504.11673

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access