Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Decomposition Kinetics of H<sub>2</sub>O<sub>2</sub> on Pd Nanocrystals with Different Shapes and Surface Strains

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2022

Decomposition Kinetics of H<sub>2</sub>O<sub>2</sub> on Pd Nanocrystals with Different Shapes and Surface Strains

0 Datasets

0 Files

en
2022
Vol 14 (16)
Vol. 14
DOI: 10.1002/cctc.202200475

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Younan Xia
Younan Xia

Institution not specified

Verified
Yifeng Shi
Ahmed O. Elnabawy
Kyle D. Gilroy
+5 more

Abstract

Abstract Direct synthesis of hydrogen peroxide (H 2 O 2 ) from H 2 and O 2 on a Pd‐based catalyst has emerged as a promising route to replace the energy‐consuming, highly inefficient anthraquinone process. However, Pd is also a good catalyst for the decomposition of H 2 O 2 , thereby compromising the selectivity toward the desired product. The coupling between the formation and decomposition reactions makes it difficult to single out the most important parameter that controls the selectivity toward direct synthesis of H 2 O 2 . Herein, support‐free monometallic Pd nanocrystals with different shapes and surface strains are used to investigate their impacts on the decomposition kinetics of H 2 O 2 . The kinetics are analyzed by tracking the concentration of the remaining H 2 O 2 using infrared spectroscopy. The data indicates that both surface structure and strain affect the decomposition kinetics of H 2 O 2 , but their impacts are inferior to that caused by Br − , a surface capping agent for the Pd{100} facets. The experimental results are consistent with the trend obtained through density functional theory calculations. This work helps shed light on the development of Pd‐based catalysts for the direct synthesis of H 2 O 2 by offering strategies to mitigate the decomposition of the desired product.

How to cite this publication

Yifeng Shi, Ahmed O. Elnabawy, Kyle D. Gilroy, Zachary D. Hood, Ruhui Chen, Chenxiao Wang, Manos Mavrikakis, Younan Xia (2022). Decomposition Kinetics of H<sub>2</sub>O<sub>2</sub> on Pd Nanocrystals with Different Shapes and Surface Strains. , 14(16), DOI: https://doi.org/10.1002/cctc.202200475.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

8

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1002/cctc.202200475

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access