Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. DECENT: Deep Learning Enabled Green Computation for Edge Centric 6G Networks

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2022

DECENT: Deep Learning Enabled Green Computation for Edge Centric 6G Networks

0 Datasets

0 Files

English
2022
IEEE Transactions on Network and Service Management
Vol 19 (3)
DOI: 10.1109/tnsm.2022.3145056

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Amir Gandomi
Amir Gandomi

University of Techology Sdyney

Verified
Pankaj Kashyap
Sushil Kumar
Ankita Jaiswal
+4 more

Abstract

Edge computing has received significant attention from academia and industries and has emerged as a promising solution for enhancing the information processing capability at the edge for next generation 6G networks. The technical design of 6G edge networks in terms of offloading the computationally extensive task is very critical because of the overgrowth in data volume primarily due to the explosion of smart IoT devices, and the ever-reducing size of these energy-constrained devices in IoT systems. Toward harnessing the benefits of deep recurrent neural network based on Long Short Term Memory (LSTM) in the design of next-generation edge networks, this paper presents a framework DECENT- Deep learning Enabled green Computation for Edge centric Next generation 6G networks. The data offloading problem is modeled as a Markov decision process considering joint optimization of energy consumption, computation latency, and offloading rate for network utility in 6G environment. The algorithm learns faster from previous long-term offloading experiences and solves the optimization problem with better convergence speed. Simulation results of the proposed framework DECENT shows that it maximizes the network utility by overcoming the challenges as compared to the state-of-the-art techniques.

How to cite this publication

Pankaj Kashyap, Sushil Kumar, Ankita Jaiswal, Omprakash Kaiwartya, Manoj Kumar, Upasana Dohare, Amir Gandomi (2022). DECENT: Deep Learning Enabled Green Computation for Edge Centric 6G Networks. IEEE Transactions on Network and Service Management, 19(3), pp. 2163-2177, DOI: 10.1109/tnsm.2022.3145056.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

7

Datasets

0

Total Files

0

Language

English

Journal

IEEE Transactions on Network and Service Management

DOI

10.1109/tnsm.2022.3145056

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access