0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn this paper, a robust data-driven fault detection approach is proposed with application to a wind turbine benchmark. The main challenges of the wind turbine fault detection lie in its nonlinearity, unknown disturbances as well as significant measurement noise. To overcome these difficulties, a data-driven fault detection scheme is proposed with robust residual generators directly constructed from available process data. A performance index and an optimization criterion are proposed to achieve the robustness of the residual signals related to the disturbances. For the residual evaluation, a proper evaluation approach as well as a suitable decision logic is given to make a correct final decision. The effectiveness of the proposed approach is finally illustrated by simulations on the wind turbine benchmark model.
Shen Yin, Guang Wang, Hamid Reza Karimi (2013). Data-driven design of robust fault detection system for wind turbines. Mechatronics, 24(4), pp. 298-306, DOI: 10.1016/j.mechatronics.2013.11.009.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2013
Authors
3
Datasets
0
Total Files
0
Language
English
Journal
Mechatronics
DOI
10.1016/j.mechatronics.2013.11.009
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access