Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Dara: Automated multiple-hypothesis phase identification and refinement from powder X-ray diffraction

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Preprint
2025

Dara: Automated multiple-hypothesis phase identification and refinement from powder X-ray diffraction

0 Datasets

0 Files

English
2025
DOI: 10.48550/arxiv.2510.19667arxiv.org/abs/2510.19667

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Gerbrand Ceder
Gerbrand Ceder

University of California, Berkeley

Verified
Yuxing Fei
Matthew J. McDermott
Christopher L. Rom
+2 more

Abstract

Powder X-ray diffraction (XRD) is a foundational technique for characterizing crystalline materials. However, the reliable interpretation of XRD patterns, particularly in multiphase systems, remains a manual and expertise-demanding task. As a characterization method that only provides structural information, multiple reference phases can often be fit to a single pattern, leading to potential misinterpretation when alternative solutions are overlooked. To ease humans' efforts and address the challenge, we introduce Dara (Data-driven Automated Rietveld Analysis), a framework designed to automate the robust identification and refinement of multiple phases from powder XRD data. Dara performs an exhaustive tree search over all plausible phase combinations within a given chemical space and validates each hypothesis using a robust Rietveld refinement routine (BGMN). Key features include structural database filtering, automatic clustering of isostructural phases during tree expansion, peak-matching-based scoring to identify promising phases for refinement. When ambiguity exists, Dara generates multiple hypothesis which can then be decided between by human experts or with further characteriztion tools. By enhancing the reliability and accuracy of phase identification, Dara enables scalable analysis of realistic complex XRD patterns and provides a foundation for integration into multimodal characterization workflows, moving toward fully self-driving materials discovery.

How to cite this publication

Yuxing Fei, Matthew J. McDermott, Christopher L. Rom, Shilong Wang, Gerbrand Ceder (2025). Dara: Automated multiple-hypothesis phase identification and refinement from powder X-ray diffraction. , DOI: https://doi.org/10.48550/arxiv.2510.19667.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Preprint

Year

2025

Authors

5

Datasets

0

Total Files

0

DOI

https://doi.org/10.48550/arxiv.2510.19667

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access