0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessArtificial neural network (ANN) has been commonly used to deal with many problems. However, since this algorithm applies backpropagation algorithms based on gradient descent (GD) technique to look for the best solution, the network may face major risks of being entrapped in local minima. To overcome those drawbacks of ANN, in this work, we propose a novel ANN working parallel with metaheuristic algorithms (MAs) to train the network. The core idea is that first, (1) GD is applied to increase the convergence speed. (2) If the network is stuck in local minima, the capacity of the global search technique of MAs is employed. (3) After escaping from local minima, the GD technique is applied again. This process is applied until the target is achieved. Additionally, to increase the efficiency of the global search capacity, a hybrid of particle swarm optimization and genetic algorithm (PSOGA) is employed. The effectiveness of ANNPSOGA is assessed using both numerical models and measurement. The results demonstrate that ANNPSOGA provides higher accuracy than traditional ANN, PSO, and other hybrid ANNs (even a higher level of noise is employed) and also considerably decreases calculational cost compared with PSO.
H. Tran-Ngoc, Samir Khatir, T. Le-Xuan, Hung Tran-Viet, Guido De Roeck, Thanh Bui-Tien, Magd Abdel Wahab (2022). Damage assessment in structures using artificial neural network working and a hybrid stochastic optimization. Scientific Reports, 12(1), DOI: 10.1038/s41598-022-09126-8.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
7
Datasets
0
Total Files
0
Language
English
Journal
Scientific Reports
DOI
10.1038/s41598-022-09126-8
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access