0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn this problem, simultaneous effects of Joule and viscous dissipation in three-dimensional flow of nanoliquid have been addressed in slip flow regime under time dependent rotational oscillations. Silver nanoparticles are submerged in the base fluid (water) due to their chemical and biological features. To increment the novelty, effects of cubic autocatalysis chemical reactions and radiative heat transfer have been incorporated in the related boundary layer equations. Dimensionless partial differential system is solved by employing the proposed implicit finite difference approach. Convergence conditions and stability criteria are obtained to ensure the convergence and accuracy of solutions. A comparative analysis is proposed for no-slip nanofluid flow (NSNF) and slip nanofluid flow (SNF). Variations in skin-friction coefficients, Sherwood and Nusselt numbers against physical parameters are tabulated. It is investigated that velocity slip and temperature jump significantly control drag forces and rate of heat transfer .
Rakesh Kumar, Ravinder Kumar, Reena Koundal, Sabir Ali Shehzad, Mohsen Sheikholeslami (2019). Cubic Auto-Catalysis Reactions in Three-Dimensional Nanofluid Flow Considering Viscous and Joule Dissipations Under Thermal Jump. Communications in Theoretical Physics, 71(7), pp. 779-779, DOI: 10.1088/0253-6102/71/7/779.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2019
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Communications in Theoretical Physics
DOI
10.1088/0253-6102/71/7/779
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access