0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessTriangular 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) and linear tetrafluorophthalonitrile (TFPN) or 2,3,5,6-tetrafluoro-4-pyridinecarbonitrile (TFPC) were linked by 1,4-dioxin linkages to form crystalline 2D covalent organic frameworks, termed COF-316 and -318. Unlike the condensation reactions commonly used to crystallize the great majority of COFs, the reactions used in this report are based on nucleophilic aromatic substitution reactions (SNAr) that are considered irreversible. Our studies show that the reactivity of TFPN and TFPC with HHTP is enhanced by the nitrile substituents leading to facile reactions of planar building units to yield the present 1,4-dioxin linked COFs. Because these reactions are irreversible, the resultant frameworks have high chemical stability in both acid and base. This has led to postsynthetic modifications of COF-316 by reactions necessitating extreme conditions to covalently install functionalities not otherwise accessible. We also report the permanent porosity of these COFs.
Bing Zhang, Mufeng Wei, Haiyan Mao, Xiaokun Pei, Sultan A. Alshmimri, Jeffrey A. Reimer, Omar M Yaghi (2018). Crystalline Dioxin-Linked Covalent Organic Frameworks from Irreversible Reactions. , 140(40), DOI: https://doi.org/10.1021/jacs.8b08374.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2018
Authors
7
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/jacs.8b08374
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access