0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessSeeing subtle nanoparticle differences A challenge in the fabrication of nanoparticles is that even for particles of uniform size, there will still be a distribution in the atomic arrangements and surface capping ligands from one particle to the next. Using liquid-cell transmission electron microscopy, Kim et al. reconstructed the structure of individual nanocrystals synthesized in one batch while they were still in solution. A comparison of multiple particles showed structural heterogeneity and differences between the interior and the outer shell of the individual nanoparticles, as well as nanoparticles containing extended defects and thus differences in internal strain, all of which can affect the physical and chemical properties of each particle. Science , this issue p. 60
Byung Hyo Kim, Junyoung Heo, SungIn Kim, Cyril F. Reboul, Hoje Chun, Dohun Kang, Hyeonhu Bae, Hyejeong Hyun, Jongwoo Lim, Hoonkyung Lee, Byungchan Han, Taeghwan Hyeon, Paul Alivisatos, Peter Ercius, Hans Elmlund, Jungwon Park (2020). Critical differences in 3D atomic structure of individual ligand-protected nanocrystals in solution. , 368(6486), DOI: https://doi.org/10.1126/science.aax3233.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
16
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1126/science.aax3233
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access