0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe number of confirmed cases of COVID-19 has been ever increasing worldwide since its outbreak in Wuhan, China. As such, many researchers have sought to predict the dynamics of the virus spread in different parts of the globe. In this paper, a novel systematic platform for prediction of the future number of confirmed cases of COVID-19 is proposed, based on several factors such as transmission rate, temperature, and humidity. The proposed strategy derives systematically a set of appropriate features for training Recurrent Neural Networks (RNN). To that end, the number of confirmed cases (CC) of COVID-19 in three states of India (Maharashtra, Tamil Nadu and Gujarat) is taken as a case study. It has been noted that stationary and nonstationary parts of the features improved the prediction of the stationary and non-stationary trends of the number of confirmed cases, respectively. The new platform has general application and can be used for pandemic time series forecasting.
Mohsen Mousavi, Rohit Salgotra, Damien Holloway, Amir Gandomi (2020). COVID-19 Time Series Forecast Using Transmission Rate and Meteorological Parameters as Features. IEEE Computational Intelligence Magazine, 15(4), pp. 34-50, DOI: 10.1109/mci.2020.3019895.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
IEEE Computational Intelligence Magazine
DOI
10.1109/mci.2020.3019895
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access