0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessHydrogen production by photochemical and electrochemical means is an important area of research related to renewable energy. 2D nanomaterials such as C3N4 and MoS2 have proven to be active for the hydrogen evolution reaction (HER). Phosphorene, a mono-elemental 2D layer of phosphorus, is known to catalyze the HER, but the activity is marginal. The use of phosphorene is also limited by its ambient instability. We have been able to prepare covalently cross-linked nanocomposites of phosphorene with MoS2 as well as MoSe2. The phosphorene-MoS2 nanocomposite shows excellent photochemical HER activity yielding 26.8 mmol h-1 g-1 of H2, while only a negligible amount is produced by the physical mixture of phosphorene and MoS2. The phosphorene-MoS2 composite also displays high electrochemical HER activity with an onset overpotential of 110 mV, close to that of Pt. The enhanced HER activity of the phosphorene-MoS2 nanocomposite can be attributed to the ordered cross-linking of the 2D sheets, increasing the interfacial area as well as the charge-transfer interaction between phosphorene and MoS2 layers. The phosphorene-MoSe2 nanocomposite also exhibits good photochemical HER activity.
Pratap Vishnoi, K. Pramoda, Uttam Gupta, Manjeet Chhetri, R. Geetha Balakrishna, Cnr Rao (2019). Covalently Linked Heterostructures of Phosphorene with MoS<sub>2</sub>/MoSe<sub>2</sub> and Their Remarkable Hydrogen Evolution Reaction Activity. ACS Applied Materials & Interfaces, 11(31), pp. 27780-27787, DOI: 10.1021/acsami.9b06910.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2019
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
ACS Applied Materials & Interfaces
DOI
10.1021/acsami.9b06910
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access