0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis article presents a factorial modelling, as well as an optimization, of the mix proportion of ultra-high performance concrete (UHPC) in terms of maximising the 28-day strength and minimising CO2 emissions. A full factorial design and desirability function optimization method were performed to find the best UHPC ingredient proportions. To improve the concrete properties, the concrete performance in terms of CO2 emissions and environment effects should be considered. Ultra-high performance with superior properties requires a large amount of cement, steel fibre and an admixture; however, from an environmental perspective, cement and admixtures and steel fibre are the important matter for global warming as cement production corresponds to 5% of all the CO2 emissions around the world. In addition, the 28-day compressive strength is one of the most important properties of concrete and is related to other mechanical properties; therefore, the 28-day compressive strength and carbon oxide emissions were selected as the responses to produce the green UHPC with high performance. The mix design parameters were the cement content (C), the steel fibre amount (F), the superplasticiser (SP), the silica fume amount (SF) and the water to cementitious ratio (W/C). The variables were compared by fine aggregate mass. The optimized ingredient mix designs are valid for the mixes with .18–.32 W/C ratio, .04–.08 steel fibre, .7–1.3 cement, .15–.30 silica fume, and .04–.08 superplasticiser by fine aggregate mass.
Mohammad Ali Mosaberpanah, Ozgur Eren (2016). CO<sub>2</sub>-full factorial optimization of an ultra-high performance concrete mix design. European Journal of Environmental and Civil engineering, 22(4), pp. 450-463, DOI: 10.1080/19648189.2016.1210030.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2016
Authors
2
Datasets
0
Total Files
0
Language
English
Journal
European Journal of Environmental and Civil engineering
DOI
10.1080/19648189.2016.1210030
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access