0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessSilicon nanowires were synthesized, in a controlled manner, for their practical integration into devices. Gold colloids were used for nanowire synthesis by the vapor-liquid-solid growth mechanism. Using SiCl4 as the precursor gas in a chemical vapor deposition system, nanowire arrays were grown vertically aligned with respect to the substrate. By manipulating the colloid deposition on the substrate, highly controlled growth of aligned silicon nanowires was achieved. Nanowire arrays were synthesized with narrow size distributions dictated by the seeding colloids and with average diameters down to 39 nm. The density of wire growth was successfully varied from approximately 0.1-1.8 wires/microm2. Patterned deposition of the colloids led to confinement of the vertical nanowire growth to selected regions. In addition, Si nanowires were grown directly into microchannels to demonstrate the flexibility of the deposition technique. By controlling various aspects of nanowire growth, these methods will enable their efficient and economical incorporation into devices.
Allon I. Hochbaum, Rong Fan, Rongrui He, Peidong Yang (2005). Controlled Growth of Si Nanowire Arrays for Device Integration. , 5(3), DOI: https://doi.org/10.1021/nl047990x.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2005
Authors
4
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/nl047990x
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access