Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Control of Radiation Damage in MoS<sub>2</sub> by Graphene Encapsulation

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2013

Control of Radiation Damage in MoS<sub>2</sub> by Graphene Encapsulation

0 Datasets

0 Files

English
2013
ACS Nano
Vol 7 (11)
DOI: 10.1021/nn4044035

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Konstantin ‘kostya’  Novoselov
Konstantin ‘kostya’ Novoselov

The University of Manchester

Verified
Recep Zan
Quentin M. Ramasse
R. Jalil
+3 more

Abstract

Recent dramatic progress in studying various two-dimensional (2D) atomic crystals and their heterostructures calls for better and more detailed understanding of their crystallography, reconstruction, stacking order, etc. For this, direct imaging and identification of each and every atom is essential. Transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) are ideal and perhaps the only tools for such studies. However, the electron beam can in some cases induce dramatic structure changes, and radiation damage becomes an obstacle in obtaining the desired information in imaging and chemical analysis in the (S)TEM. This is the case of 2D materials such as molybdenum disulfide MoS2, but also of many biological specimens, molecules, and proteins. Thus, minimizing damage to the specimen is essential for optimum microscopic analysis. In this article we demonstrate, on the example of MoS2, that encapsulation of such crystals between two layers of graphene allows for a dramatic improvement in stability of the studied 2D crystal and permits careful control over the defect nature and formation in it. We present STEM data collected from single-layer MoS2 samples prepared for observation in the microscope through three distinct procedures. The fabricated single-layer MoS2 samples were either left bare (pristine), placed atop a single-layer of graphene, or finally encapsulated between single graphene layers. Their behavior under the electron beam is carefully compared, and we show that the MoS2 sample "sandwiched" between the graphene layers has the highest durability and lowest defect formation rate compared to the other two samples, for very similar experimental conditions.

How to cite this publication

Recep Zan, Quentin M. Ramasse, R. Jalil, Thanasis Georgiou, U. Bangert, Konstantin ‘kostya’ Novoselov (2013). Control of Radiation Damage in MoS<sub>2</sub> by Graphene Encapsulation. ACS Nano, 7(11), pp. 10167-10174, DOI: 10.1021/nn4044035.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2013

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

ACS Nano

DOI

10.1021/nn4044035

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access