Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Conceptual Basis for a Sustainable and Fire Resilient Built Environment

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2023

Conceptual Basis for a Sustainable and Fire Resilient Built Environment

0 Datasets

0 Files

English
2023
Fire Technology
DOI: 10.1007/s10694-023-01490-9

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Brian Meacham
Brian Meacham

Fire Risk & Regulatory Consultant At Crux Consulting Llc

Verified
Margaret McNamee
Brian Meacham

Abstract

Fire has the potential to create significant impacts on the built environment. Managing this impact is sometimes pursued without consideration of the interface between the natural and technological worlds. However, as society has recognized the impacts of technological development on environmental sustainability, the need for sustainable and resilient development has emerged. To facilitate sustainable and resilient development, technological choices should embrace a sociotechnical systems approach that considers the interactions of society, technology and institutions, and their interactions with the environment. Failure to do so can result in unintended consequences. Society’s technological choices aimed at increasing sustainability of buildings, such as the desire to reduce building carbon footprints or improve the use of renewable energy systems, can have significant impacts on fire resilience if not considered holistically. To better understand and comprehensively address and mitigate intolerable fire risk associated with choices driven by sustainability objectives, a balanced and holistic systems approach is needed. To this end, a framework to foster a systems-oriented approach to improving both sustainability and fire resilience, in tandem, to create a Sustainable and Fire Resilient Built Environment (SAFR-BE) is presented.

How to cite this publication

Margaret McNamee, Brian Meacham (2023). Conceptual Basis for a Sustainable and Fire Resilient Built Environment. Fire Technology, DOI: 10.1007/s10694-023-01490-9.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

2

Datasets

0

Total Files

0

Language

English

Journal

Fire Technology

DOI

10.1007/s10694-023-01490-9

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access