Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Comparison of SAM-Based Junctions with Ga<sub>2</sub>O<sub>3</sub>/EGaIn Top Electrodes to Other Large-Area Tunneling Junctions

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2012

Comparison of SAM-Based Junctions with Ga<sub>2</sub>O<sub>3</sub>/EGaIn Top Electrodes to Other Large-Area Tunneling Junctions

0 Datasets

0 Files

en
2012
Vol 116 (26)
Vol. 116
DOI: 10.1021/jp303072a

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
George M M Whitesides
George M M Whitesides

Harvard University

Verified
Christian A. Nijhuis
William F. Reus
Jabulani R. Barber
+1 more

Abstract

This paper compares the J(V) characteristics obtained for self-assembled monolayer (SAM)-based tunneling junctions with top electrodes of the liquid eutectic of gallium and indium (EGaIn) fabricated using two different procedures: (i) stabilizing the EGaIn electrode in PDMS microchannels and (ii) suspending the EGaIn electrode from the tip of a syringe. These two geometries of the EGaIn electrode (with, at least when in contact with air, its solid Ga2O3 surface film) produce indistinguishable data. The junctions incorporated SAMs of SCn–1CH3 (with n = 12, 14, 16, or 18) supported on ultraflat, template-stripped silver electrodes. Both methods generated high yields of junctions (70–85%) that were stable enough to conduct measurements of J(V) with statistically large numbers of data (N = 400–1000). The devices with the top electrode stabilized in microchannels also made it possible to conduct measurements of J(V) as a function of temperature, almost down to liquid nitrogen temperatures (T = 110–293 K). The J(V) characteristics were independent of T, and linear in the low-bias regime (−0.10 to 0.10V); the current density decreased exponentially with increasing thickness of the SAM. These observations indicate that tunneling is the main mechanism of charge transport across these junctions. Both methods gave values of the tunneling decay coefficient, β, of ∼1.0 nC–1 (∼0.80 Å–1), and the pre-exponential factor, J0 (which is a constant that includes contact resistance), of ∼3.0 × 102 A/cm2. Comparison of the electrical characteristics of the junctions generated using EGaIn by both methods against the results of other systems for measuring charge transport indicated that the value of β generated using EGaIn electrodes is compatible with the consensus of values reported in the literature. Although there is no consensus for the value of J0, the value of J0 estimated using the Ga2O3/EGaIn electrode is compatible with other values reported in the literature. The agreement of experimental values of β across a number of experimental platforms provides strong evidence that the structures of the SAMs—including their molecular and supramolecular structure, and their interfaces with the electrodes—dominate charge transport in both types of EGaIn junctions. These results establish that studies of J(V) characteristics of AgTS-SAM//Ga2O3/EGaIn junctions are dominated by the structure of the organic component of the SAM, and not by artifacts due to the electrodes, the resistance of the Ga2O3 surface film, or to the work functions of the metals.

How to cite this publication

Christian A. Nijhuis, William F. Reus, Jabulani R. Barber, George M M Whitesides (2012). Comparison of SAM-Based Junctions with Ga<sub>2</sub>O<sub>3</sub>/EGaIn Top Electrodes to Other Large-Area Tunneling Junctions. , 116(26), DOI: https://doi.org/10.1021/jp303072a.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2012

Authors

4

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1021/jp303072a

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access