Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Comparison of LLMs in Extracting Synthesis Conditions and Generating Q&A Datasets for Metal-Organic Frameworks

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Preprint
en
2024

Comparison of LLMs in Extracting Synthesis Conditions and Generating Q&A Datasets for Metal-Organic Frameworks

0 Datasets

0 Files

en
2024
DOI: 10.26434/chemrxiv-2024-pb049

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Omar M Yaghi
Omar M Yaghi

University of California, Berkeley

Verified
Yuang Shi
Nakul Rampal
Chengbin Zhao
+3 more

Abstract

Artificial intelligence, represented by large language models (LLMs), has demonstrated tremendous capabilities in natural language recognition and extraction. To further evaluate the performance of various LLMs in extracting information from academic papers, this study explores the application of LLMs in reticular chemistry, focusing on their effectiveness in generating Q&A datasets and extracting synthesis conditions from scientific literature. The models evaluated include OpenAI's GPT-4 Turbo, Anthropic’s Claude 3 Opus, and Google's Gemini 1.5 Pro. Key results indicate that Claude excelled in providing complete synthesis data, while Gemini outperformed others in accuracy, characterization-free compliance(obedience), and proactive structuring of responses. Although GPT-4 was less effective in quantitative metrics, it demonstrated strong logical reasoning and contextual inference capabilities. Overall, Gemini and Claude achieved the highest scores in accuracy, groundedness, and adherence to prompt requirements, making them suitable benchmarks for future studies. The findings reveal the potential of LLMs to aid in scientific research, particularly in the efficient construction of structured datasets, which can help train models, predict, and assist in the synthesis of new metal-organic frameworks (MOFs).

How to cite this publication

Yuang Shi, Nakul Rampal, Chengbin Zhao, Christian Borgs, Jennifer Chayes, Omar M Yaghi (2024). Comparison of LLMs in Extracting Synthesis Conditions and Generating Q&A Datasets for Metal-Organic Frameworks. , DOI: https://doi.org/10.26434/chemrxiv-2024-pb049.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Preprint

Year

2024

Authors

6

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.26434/chemrxiv-2024-pb049

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access