0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessUsing a light optical microscope (LOM), microstructural analysis is carried out on plain-carbon, DP600, and As-Quenched (As-Q) martensitic steels to identify the different phases interacting with hydrogen. Our recently developed electrochemical procedure, based on cyclic voltammetry (CV) and potentiostatic discharging method, is applied on these steel alloys having different phases to monitor H-uptake in the steels with respect to their microstructural features. The electrochemical method is capable of measuring diffusible H-concentration (including mobile hydrogen) for the steel alloys under H-charging condition, where hydrogen embrittlement phenomena can occur within in-service environments. The best practice in this procedure is to perform electrochemical H-measurements immediately after H-charging without interruption between steps to avoid spontaneous H-loss. Various charging times are investigated to estimate the time to near H-saturation for each steel alloy. To gain additional insights in our H-related findings, hot extraction measurements are performed to measure the diffusible H-concentration in the steels. A clear correlation between the results of hot extraction and electrochemical discharging methods is confirmed by a mathematical model, based on Fick's Law, predicting diffusible H-loss due to the time lag. Thus, under the used charging conditions, As-Q martensitic steel has been found to contain the lowest amount of diffusible hydrogen, with its near H-saturation reached after 4 hours of H-charging. DP600 is H-saturated after one hour of charging, while near H-saturation for plain-carbon steel is attained after 30 minutes. The fraction of mobile-H in plain-carbon steel is relatively higher than in DP600 steel.
Berk Özdirik, Tom Depover, Lorenzo Vecchi, Kim Verbeken, Herman Terryn, Iris De Graeve (2018). Comparison of Electrochemical and Thermal Evaluation of Hydrogen Uptake in Steel Alloys Having Different Microstructures. Journal of The Electrochemical Society, 165(11), pp. C787-C793, DOI: 10.1149/2.0891811jes.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2018
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Journal of The Electrochemical Society
DOI
10.1149/2.0891811jes
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access