Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Comparison of Electrochemical and Thermal Evaluation of Hydrogen Uptake in Steel Alloys Having Different Microstructures

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2018

Comparison of Electrochemical and Thermal Evaluation of Hydrogen Uptake in Steel Alloys Having Different Microstructures

0 Datasets

0 Files

English
2018
Journal of The Electrochemical Society
Vol 165 (11)
DOI: 10.1149/2.0891811jes

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Herman Terryn
Herman Terryn

Institution not specified

Verified
Berk Özdirik
Tom Depover
Lorenzo Vecchi
+3 more

Abstract

Using a light optical microscope (LOM), microstructural analysis is carried out on plain-carbon, DP600, and As-Quenched (As-Q) martensitic steels to identify the different phases interacting with hydrogen. Our recently developed electrochemical procedure, based on cyclic voltammetry (CV) and potentiostatic discharging method, is applied on these steel alloys having different phases to monitor H-uptake in the steels with respect to their microstructural features. The electrochemical method is capable of measuring diffusible H-concentration (including mobile hydrogen) for the steel alloys under H-charging condition, where hydrogen embrittlement phenomena can occur within in-service environments. The best practice in this procedure is to perform electrochemical H-measurements immediately after H-charging without interruption between steps to avoid spontaneous H-loss. Various charging times are investigated to estimate the time to near H-saturation for each steel alloy. To gain additional insights in our H-related findings, hot extraction measurements are performed to measure the diffusible H-concentration in the steels. A clear correlation between the results of hot extraction and electrochemical discharging methods is confirmed by a mathematical model, based on Fick's Law, predicting diffusible H-loss due to the time lag. Thus, under the used charging conditions, As-Q martensitic steel has been found to contain the lowest amount of diffusible hydrogen, with its near H-saturation reached after 4 hours of H-charging. DP600 is H-saturated after one hour of charging, while near H-saturation for plain-carbon steel is attained after 30 minutes. The fraction of mobile-H in plain-carbon steel is relatively higher than in DP600 steel.

How to cite this publication

Berk Özdirik, Tom Depover, Lorenzo Vecchi, Kim Verbeken, Herman Terryn, Iris De Graeve (2018). Comparison of Electrochemical and Thermal Evaluation of Hydrogen Uptake in Steel Alloys Having Different Microstructures. Journal of The Electrochemical Society, 165(11), pp. C787-C793, DOI: 10.1149/2.0891811jes.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2018

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

Journal of The Electrochemical Society

DOI

10.1149/2.0891811jes

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access