Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Comparative study of a newly proposed machine learning classification to detect damage occurrence in structures

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2023

Comparative study of a newly proposed machine learning classification to detect damage occurrence in structures

0 Datasets

0 Files

English
2023
Engineering Applications of Artificial Intelligence
Vol 127
DOI: 10.1016/j.engappai.2023.107226

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Wael A. Altabey
Wael A. Altabey

Alexandria University

Verified
Vahid Ahmadian
Seyed Bahram Beheshti Aval
Mohammad Noori
+2 more

Abstract

Over the past two decades, an increasing number of large-scale structures have been built around the world. Constructing these structures has been a time consuming and highly expensive process. Thus, providing a structural health monitoring system to guarantee their proper functionality is important. In recent years, the advancement of technology and artificial intelligence methods based on signal processing and machine learning has attracted the attention of researchers. The challenges currently exist in the field of structural health monitoring to identify and classify damages to achieve high accuracy in a health-monitoring program. The presence of noise in measurement, various exciting load types, and varying environmental conditions cause difficulty in the practical identification and classification of damage in structures. Recent studies have employed finite element modeling to test the effectiveness of proposed methods for identifying damages in structures. However, detecting damage in real-world structures as mentioned above, presents unique difficulties, and the effectiveness of the proposed methods for damage detection in real-world structures remains uncertain. In order to improve the performance of damage detection methods and increase the accuracy of these methods as much as possible, the most important action is to identify damage sensitive data in the structure. The next challenge is to choose a high performance algorithm for damage identification and classification. One of the advanced algorithms, which has a very high ability to extract the desired features from the measured data, is the XGBoost algorithm. This algorithm has recently attracted the attention of researchers and has been used in different fields. So far, the ability of this algorithm has not been examined in the field of damage detection in order to extract desirable features. This article deals with the identification, classification, and severity of damages in the SMC benchmark bridge, which is an existing megastructure in the real world, as well as the IASC-ASCE benchmark structure, whose responses were taken under applied loads in the laboratory environment. First, using the XGBoost algorithm, the importance of the features extracted from the sensors' data is evaluated, and then the features, which are effective in the damage detection process, are selected. The results of this algorithm indicate that only by selecting 6 features from a large volume of data, the best performance can be achieved and selecting more does not help increase efficiency. In the next step, the Stacking method, which is a hybrid machine learning algorithm for damage classification, is evaluated and compared with some conventional machine learning algorithms that have been used in previous studies. The Stacking method stands out as the top performer with an average accuracy rate of 93.1%, leading to the conclusion that it is the most effective approach. Finally, by applying the presented algorithm to the two mentioned structures, its validation is appraised.

How to cite this publication

Vahid Ahmadian, Seyed Bahram Beheshti Aval, Mohammad Noori, Tianyu Wang, Wael A. Altabey (2023). Comparative study of a newly proposed machine learning classification to detect damage occurrence in structures. Engineering Applications of Artificial Intelligence, 127, pp. 107226-107226, DOI: 10.1016/j.engappai.2023.107226.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

Engineering Applications of Artificial Intelligence

DOI

10.1016/j.engappai.2023.107226

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access