0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe spray combustion characteristics of coconut (CME), palm (PME) and soybean (SME) biodiesels/methyl esters were compared with diesel by using an axial swirl flame burner. Atomisation of the liquid fuels was achieved via an airblast-type nozzle with varied atomising air-to-liquid ratios (ALR) of 2–2.5. The fully developed sprays were mixed with strongly swirled air to form combustible mixtures prior to igniting at the burner outlet. Under fuel-lean condition, biodiesel spray flames exhibited bluish flame core without the yellowish sooty flame brush, indicating low sooting tendency as compared to baseline diesel. Increasing the atomising air led to the reduction of flame length but increase in flame intensity. Measurements of post-combustion emissions show that SME produced higher NO as compared to CME and PME due to higher degree of unsaturation, while the most saturated CME showed the lowest NO and CO emissions amongst the biodiesels tested across all equivalence ratios. By preheating the main swirl air to 250 °C, higher emissions of NO, CO and CO2 were observed for biodiesels. Higher ALR led to reduced NO and CO emissions regardless of the fuel used, making it a viable strategy to resolve the simultaneous NOCO reduction conundrum. This work shows that despite different emission characteristics exhibited by biodiesels produced from different feedstock, they are in principle potential supplemental fuels for practical combustion systems. The pollutants emitted can be mitigated by operating at higher ALR in a twin-fluid based swirl combustor.
Meng Choung Chiong, Cheng Tung Chong, Jo-Han Ng, Manh‐Vu Tran, Su Shiung Lam, Agustin Valera Medina, Mohammad Nazri Mohd Jaafar (2018). Combustion and emission performances of coconut, palm and soybean methyl esters under reacting spray flame conditions. Journal of the Energy Institute, 92(4), pp. 1034-1044, DOI: 10.1016/j.joei.2018.07.003.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2018
Authors
7
Datasets
0
Total Files
0
Language
English
Journal
Journal of the Energy Institute
DOI
10.1016/j.joei.2018.07.003
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access