Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Colloidally Synthesized Monodisperse Rh Nanoparticles Supported on SBA-15 for Size- and Pretreatment-Dependent Studies of CO Oxidation

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2009

Colloidally Synthesized Monodisperse Rh Nanoparticles Supported on SBA-15 for Size- and Pretreatment-Dependent Studies of CO Oxidation

0 Datasets

0 Files

en
2009
Vol 113 (20)
Vol. 113
DOI: 10.1021/jp901288m

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Gabor Somorjai
Gabor Somorjai

University of California, Berkeley

Verified
Michael Graß
Sang Hoon Joo
Ya‐Wen Zhang
+1 more

Abstract

A particle size dependence for CO oxidation over rhodium nanoparticles of 1.9-11.3 nm has been investigated and determined to be modified by the existence of the capping agent poly(vinylpyrrolidone) (PVP). The particles were prepared using a polyol reduction procedure with PVP as the capping agent. The Rh nanoparticles were subsequently supported on SBA-15 during hydrothermal synthesis to produce Rh/SBA-15 supported catalysts for size-dependent catalytic studies. CO oxidation by O{sub 2} at 40 Torr CO and 100 Torr O{sub 2} was investigated over two series of Rh/SBA-15 catalysts: as-synthesized Rh/SBA-15 covering the full range of Rh sizes and the same set of catalysts after high temperature calcination and reduction. The turnover frequency at 443 K increases from 0.4 to 1.7 s{sup -1} as the particle size decreases from 11.3 to 1.9 nm for the as-synthesized catalysts. After calcination and reduction, the turnover frequency is between 0.1 and 0.4 s{sup -1} with no particle size dependence. The apparent activation energy for all catalysts is {approx}30 kcal mol{sup -1} and is independent of particle size and thermal treatment. Infrared spectroscopy of CO on the Rh nanoparticles indicates that the heat treatments used influence the mode of CO adsorption. As a result, the particle size dependence for CO oxidation is altered after calcination and reduction of the catalysts. CO adsorbs at two distinct bridge sites on as-synthesized Rh/SBA-15, attributable to metallic Rh(0) and oxidized Rh(I) bridge sites. After calcination and reduction, however, CO adsorbs only at Rh(0) atop sites. The change in adsorption geometry and oxidation activity may be attributable to the interaction between PVP and the Rh surface. This capping agent affect may open new possibilities for the tailoring of metal catalysts using solution nanoparticle synthesis methods.

How to cite this publication

Michael Graß, Sang Hoon Joo, Ya‐Wen Zhang, Gabor Somorjai (2009). Colloidally Synthesized Monodisperse Rh Nanoparticles Supported on SBA-15 for Size- and Pretreatment-Dependent Studies of CO Oxidation. , 113(20), DOI: https://doi.org/10.1021/jp901288m.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2009

Authors

4

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1021/jp901288m

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access