Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. COKG-QA: Multi-hop Question Answering over COVID-19 Knowledge Graphs

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2022

COKG-QA: Multi-hop Question Answering over COVID-19 Knowledge Graphs

0 Datasets

0 Files

English
2022
Data Intelligence
Vol 4 (3)
DOI: 10.1162/dint_a_00154

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Haofen Wang
Haofen Wang

Tongji University

Verified
Huifang Du
Zhongwen Le
Haofen Wang
+2 more

Abstract

COVID-19 evolves rapidly and an enormous number of people worldwide desire instant access to COVID-19 information such as the overview, clinic knowledge, vaccine, prevention measures, and COVID-19 mutation. Question answering (QA) has become the mainstream interaction way for users to consume the ever-growing information by posing natural language questions. Therefore, it is urgent and necessary to develop a QA system to offer consulting services all the time to relieve the stress of health services. In particular, people increasingly pay more attention to complex multi-hop questions rather than simple ones during the lasting pandemic, but the existing COVID-19 QA systems fail to meet their complex information needs. In this paper, we introduce a novel multi-hop QA system called COKG-QA, which reasons over multiple relations over large-scale COVID-19 Knowledge Graphs to return answers given a question. In the field of question answering over knowledge graph, current methods usually represent entities and schemas based on some knowledge embedding models and represent questions using pre-trained models. While it is convenient to represent different knowledge (i.e., entities and questions) based on specified embeddings, an issue raises that these separate representations come from heterogeneous vector spaces. We align question embeddings with knowledge embeddings in a common semantic space by a simple but effective embedding projection mechanism. Furthermore, we propose combining entity embeddings with their corresponding schema embeddings which served as important prior knowledge, to help search for the correct answer entity of specified types. In addition, we derive a large multi-hop Chinese COVID-19 dataset (called COKG-DATA for remembering) for COKG-QA based on the linked knowledge graph OpenKG-COVID19 launched by OpenKG①, including comprehensive and representative information about COVID-19. COKG-QA achieves quite competitive performance in the 1-hop and 2-hop data while obtaining the best result with significant improvements in the 3-hop. And it is more efficient to be used in the QA system for users. Moreover, the user study shows that the system not only provides accurate and interpretable answers but also is easy to use and comes with smart tips and suggestions.

How to cite this publication

Huifang Du, Zhongwen Le, Haofen Wang, Yunwen Chen, Jing Yu (2022). COKG-QA: Multi-hop Question Answering over COVID-19 Knowledge Graphs. Data Intelligence, 4(3), pp. 471-492, DOI: 10.1162/dint_a_00154.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

Data Intelligence

DOI

10.1162/dint_a_00154

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access