Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Citrate adsorption can decrease soluble phosphate concentration in soils: Results of theoretical modeling

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2013

Citrate adsorption can decrease soluble phosphate concentration in soils: Results of theoretical modeling

0 Datasets

0 Files

English
2013
Applied Geochemistry
Vol 35
DOI: 10.1016/j.apgeochem.2013.03.018

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Davey L Jones
Davey L Jones

Bangor University

Verified
Marek Duputel
Nicolas Devau
Michel Brossard
+4 more

Abstract

A major problem for 21st century agriculture is the prospect of P scarcity. Adsorption of PO4 on the soil’s solid phase is the primary mechanism regulating P availability. Release of citrate by roots is generally thought to increase the availability of P, which in turn improves P acquisition by plants. However, the interaction between citrate and PO4 remains poorly understood in soils and conflicting results are found in the literature. Here modeling is used to investigate the effects of citrate adsorption on P availability in a chromic cambisol, a luvisol and two ferralsols over a range of soil pH values. The effect of different levels of exchangeable Ca, soil organic C (SOC), dissolved organic C (DOC) and PO4 fertilization were also tested in order to cover a wider range of environmental conditions. Results showed that the competition of citrate for PO4 binding sites was not the only mechanism regulating P availability. Citrate adsorption can also increase PO4 adsorption through electrostatic interactions with adsorbed Ca2+ ions and actively reduce P availability. More precisely, it was found that the addition of 10μmol citrate kg−1 soil decreased P availability in both chromic cambisol and luvisol. The same trend was predicted by the model with 100μmol of citrate kg−1 soil in the chromic cambisol, whereas available P was found to increase in the luvisol. In contrast, the addition of citrate at these two concentrations always increased P availability in the two ferralsols. Increasing exchangeable Ca further decreased P availability in the chromic cambisol and luvisol, while it further increased available P in ferralsols. Additional sensitivity tests showed that DOC concentration had little influence on these results. In contrast, increasing SOC concentration massively counteracted the deleterious influence of citrate in chromic cambisol, while the effect was amplified in luvisol. In ferralsols, it was mainly observed that the increase of SOC further promoted P availability. To conclude, it was found that citrate can either increase or decrease P availability in soil, depending mainly on the occurrence of 2:1 clay minerals and on the concentrations of citrate, adsorbed Ca, and soil organic C. Special attention should, therefore, be given to possible adverse effects of rhizosphere management for improved P nutrition.

How to cite this publication

Marek Duputel, Nicolas Devau, Michel Brossard, Benoît Jaillard, Davey L Jones, Philippe Hinsinger, Frédéric Gérard (2013). Citrate adsorption can decrease soluble phosphate concentration in soils: Results of theoretical modeling. Applied Geochemistry, 35, pp. 120-131, DOI: 10.1016/j.apgeochem.2013.03.018.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2013

Authors

7

Datasets

0

Total Files

0

Language

English

Journal

Applied Geochemistry

DOI

10.1016/j.apgeochem.2013.03.018

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access