Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Charge Transport through Self‐Assembled Monolayers of Monoterpenoids

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2019

Charge Transport through Self‐Assembled Monolayers of Monoterpenoids

0 Datasets

0 Files

en
2019
Vol 131 (24)
Vol. 131
DOI: 10.1002/ange.201902997

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
George M M Whitesides
George M M Whitesides

Harvard University

Verified
Brian J. Cafferty
Yuan Li
Mostafa Baghbanzadeh
+3 more

Abstract

Abstract The nature of the processes at the origin of life that selected specific classes of molecules for broad incorporation into cells is controversial. Among those classes selected were polyisoprenoids and their derivatives. This paper tests the hypothesis that polyisoprenoids were early contributors to membranes in part because they (or their derivatives) could facilitate charge transport by quantum tunneling. It measures charge transport across self‐assembled monolayers (SAMs) of carboxyl‐terminated monoterpenoids (O 2 C(C 9 HX)) and alkanoates (O 2 C(C 7 HX)) with different degrees of unsaturation, supported on silver (Ag TS ) bottom electrodes, with Ga 2 O 3 /EGaIn top electrodes. Measurements of current density of SAMs of linear length‐matched hydrocarbons—both saturated and unsaturated—show that completely unsaturated molecules transport charge faster than those that are completely saturated by approximately a factor of ten. This increase in relative rates of charge transport correlates with the number of carbon–carbon double bonds, but not with the extent of conjugation. These results suggest that polyisoprenoids—even fully unsaturated—are not sufficiently good tunneling conductors for their conductivity to have favored them as building blocks in the prebiotic world.

How to cite this publication

Brian J. Cafferty, Yuan Li, Mostafa Baghbanzadeh, Dmitrij Rappoport, M. Hassan Beyzavi, George M M Whitesides (2019). Charge Transport through Self‐Assembled Monolayers of Monoterpenoids. , 131(24), DOI: https://doi.org/10.1002/ange.201902997.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2019

Authors

6

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1002/ange.201902997

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access