Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Charge Transport Measured Using the EGaIn Junction through Self-Assembled Monolayers Immersed in Organic Liquids

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2022

Charge Transport Measured Using the EGaIn Junction through Self-Assembled Monolayers Immersed in Organic Liquids

0 Datasets

0 Files

en
2022
Vol 127 (1)
Vol. 127
DOI: 10.1021/acs.jpcb.2c07901

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
George M M Whitesides
George M M Whitesides

Harvard University

Verified
Yuan Li
Samuel E. Root
Lee Belding
+5 more

Abstract

This paper describes measurements of charge transport by tunneling through molecular junctions comprising a self-assembled monolayer (SAM) supported by a template-stripped metal bottom electrode (MTS), which has been immersed in an organic liquid and contacted by a conical Ga2O3/EGaIn top electrode. These junctions formed in organic liquids are robust; they show stabilities and yields similar to those formed in air. We formed junctions under seven external environments: (I) air, (II) perfluorocarbons, (III) linear hydrocarbons, (IV) cyclic hydrocarbons, (V) aromatic compounds, (VI) large, irregularly shaped hydrocarbons, and (VII) dimethyl siloxanes. Several different lengths of SAMs of n-alkanethiolates, S(CH2)n-1CH3 with n = 4-18, and two different kinds of bottom electrodes (AgTS or AuTS) are employed to assess the mechanism underlying the observed changes in tunneling currents. Measurements of current density through junctions immersed in perfluorocarbons (II) are comparable to junctions measured in air. Junctions immersed in other organic liquids show reductions in the values of current density, compared to the values in air, ranging from 1 (III) to 5 orders of magnitude (IV). We interpret the most plausible mechanism for these reductions in current densities to be an increase in the length of the tunneling pathway, reflecting the formation of thin (0.5-1.5 nm) liquid films at the interface between the SAM and the Ga2O3/EGaIn electrode. Remarkably, the thickness of the liquid film─estimated by the simplified Simmons model, measurements of electrical breakdown of the junction, and simulations of molecular dynamics─is consistent with the existing observations of structured liquid layers that form between two flat interfaces from measurements obtained by the surface force apparatus. These results suggest the use of the EGaIn junction and measurements of charge transport by tunneling as a new form of surface analysis, with the applications in the study of near-surface, weak, molecular interactions and the behavior of liquid films adjacent to non-polar interfaces.

How to cite this publication

Yuan Li, Samuel E. Root, Lee Belding, Jun‐Woo Park, Hyo Jae Yoon, Cancan Huang, Mostafa Baghbanzadeh, George M M Whitesides (2022). Charge Transport Measured Using the EGaIn Junction through Self-Assembled Monolayers Immersed in Organic Liquids. , 127(1), DOI: https://doi.org/10.1021/acs.jpcb.2c07901.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

8

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1021/acs.jpcb.2c07901

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access