0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessEnergy consumption in Wireless Sensor Networks (WSN) involving multiple sensor nodes is a crucial parameter in many applications like smart healthcare systems, home automation, environmental monitoring, and industrial use. Hence, an energy-efficient cluster-head (CH) selection strategy is imperative in a WSN to improve network performance. So to balance the harsh conditions in the network with fast changes in the energy dynamics, a novel energy-efficient adaptive fuzzy-based CH selection approach is projected. Extensive simulations exploited various real-time scenarios, such as varying the optimal position of the location of the base station and network energy. Additionally, the results showed an improved performance in the throughput (46%) and energy consumption (66%), which demonstrated the robustness and efficacy of the proposed model for the future designs of WSN applications.
Trupti Mayee Behera, Sarita Nanda, S. K. Mohapatra, Umesh Chandra Samal, Mohammad S. Khan, Amir Gandomi (2021). CH Selection via Adaptive Threshold Design Aligned on Network Energy. IEEE Sensors Journal, 21(6), pp. 8491-8500, DOI: 10.1109/jsen.2021.3051451.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
IEEE Sensors Journal
DOI
10.1109/jsen.2021.3051451
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access