Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Centroid opposition-based backtracking search algorithm for global optimization and engineering problems

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2024

Centroid opposition-based backtracking search algorithm for global optimization and engineering problems

0 Datasets

0 Files

English
2024
Advances in Engineering Software
Vol 198
DOI: 10.1016/j.advengsoft.2024.103784

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Amir Gandomi
Amir Gandomi

University of Techology Sdyney

Verified
Sanjib Debnath
Swapan Debbarma
Sukanta Nama
+4 more

Abstract

Evolutionary algorithms (EAs) have a lot of potential to handle nonlinear and non-convex objective functions. Particularly, the backtracking search algorithm (BSA) is a popular nature-based evolutionary optimization method that has attracted many researchers due to its simple structure and efficiency in problem-solving across diverse fields. However, like other optimization algorithms, BSA is also prone to reduced diversity, local optima, and inadequate intensification capabilities. To overcome the flaws and increase the performance of BSA, this research proposes a centroid opposition-based backtracking search algorithm (CoBSA) for global optimization and engineering design problems. In CoBSA, specific individuals simultaneously acquire current and historical population knowledge to preserve population variety and improve exploration capability. On the other hand, other individuals execute the position from the current population's centroid opposition to progress convergence speed and exploitation potential. In addition, an elite process based on logistic chaotic local search was developed to improve the superiority of the current individuals. The suggested CoBSA was validated on a set of benchmark functions and then employed in a set of application examples. According to extensive numerical results and assessments, CoBSA outperformed the other state-of-the-art methods in terms of accurateness, reliability, and execution capability.

How to cite this publication

Sanjib Debnath, Swapan Debbarma, Sukanta Nama, Apu Kumar Saha, Runu Dhar, Ali Riza Yıldız, Amir Gandomi (2024). Centroid opposition-based backtracking search algorithm for global optimization and engineering problems. Advances in Engineering Software, 198, pp. 103784-103784, DOI: 10.1016/j.advengsoft.2024.103784.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

7

Datasets

0

Total Files

0

Language

English

Journal

Advances in Engineering Software

DOI

10.1016/j.advengsoft.2024.103784

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access