0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessEvolutionary algorithms (EAs) have a lot of potential to handle nonlinear and non-convex objective functions. Particularly, the backtracking search algorithm (BSA) is a popular nature-based evolutionary optimization method that has attracted many researchers due to its simple structure and efficiency in problem-solving across diverse fields. However, like other optimization algorithms, BSA is also prone to reduced diversity, local optima, and inadequate intensification capabilities. To overcome the flaws and increase the performance of BSA, this research proposes a centroid opposition-based backtracking search algorithm (CoBSA) for global optimization and engineering design problems. In CoBSA, specific individuals simultaneously acquire current and historical population knowledge to preserve population variety and improve exploration capability. On the other hand, other individuals execute the position from the current population's centroid opposition to progress convergence speed and exploitation potential. In addition, an elite process based on logistic chaotic local search was developed to improve the superiority of the current individuals. The suggested CoBSA was validated on a set of benchmark functions and then employed in a set of application examples. According to extensive numerical results and assessments, CoBSA outperformed the other state-of-the-art methods in terms of accurateness, reliability, and execution capability.
Sanjib Debnath, Swapan Debbarma, Sukanta Nama, Apu Kumar Saha, Runu Dhar, Ali Riza Yıldız, Amir Gandomi (2024). Centroid opposition-based backtracking search algorithm for global optimization and engineering problems. Advances in Engineering Software, 198, pp. 103784-103784, DOI: 10.1016/j.advengsoft.2024.103784.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
7
Datasets
0
Total Files
0
Language
English
Journal
Advances in Engineering Software
DOI
10.1016/j.advengsoft.2024.103784
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access