0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe catalytic activity of palladium toward selective hydrogenation of hydrocarbons depends on the partial pressure of hydrogen. It has been suggested that the reaction proceeds selectively toward partial hydrogenation only when a carbon-rich film is present at the metal surface. On the basis of first-principles simulations, we show that carbon can dissolve into the metal because graphite formation is delayed by the large critical nucleus necessary for graphite nucleation. A bulk carbide Pd(6)C with a hexagonal six-layer fcc-like supercell forms. The structure is characterized by core level shifts of 0.66-0.70 eV in the core states of Pd, in agreement with experimental x-ray photoemission spectra. Moreover, this phase traps bulk-dissolved hydrogen, suppressing the total hydrogenation reaction channel and fostering partial hydrogenation.
Nicola Seriani, Florian Mittendorfer, Kresse Georg (2010). Carbon in palladium catalysts: A metastable carbide. The Journal of Chemical Physics, 132(2), DOI: 10.1063/1.3290813.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2010
Authors
3
Datasets
0
Total Files
0
Language
English
Journal
The Journal of Chemical Physics
DOI
10.1063/1.3290813
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access