0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract Smart cropland management practices can mitigate greenhouse gas (GHG) emissions while safeguarding food security. However, the integrated effects on net greenhouse gas budget (NGHGB) and grain yield from different management practices remain poorly defined and vary with environmental and application conditions. Here, we conducted a global meta‐analysis on 347 observation sets of non‐CO 2 GHG (CH 4 and N 2 O) emissions and grain yield, and 412 observations of soil organic carbon sequestration rate (SOCSR). Our results show that for paddy rice, replacing synthetic nitrogen at the rate of 30%–59% with organic fertilizer significantly decreased net GHG emissions (NGHGB: −15.3 ± 3.4 [standard error], SOCSR: −15.8 ± 3.8, non‐CO 2 GHGs: 0.6 ± 0.1 in Mg CO 2 eq ha −1 year −1 ) and improved rice yield (0.4 ± 0.1 in Mg ha −1 year −1 ). In contrast, intermittent irrigation significantly increased net GHG emissions by 11.2 ± 3.1 and decreased rice yield by 0.4 ± 0.1. The reduction in SOC sequestration by intermittent irrigation (15.5 ± 3.3), which was most severe (>20) in alkaline soils (pH > 7.5), completely offset the mitigation in CH 4 emissions. Straw return for paddy rice also led to a net increase in GHG emissions (NGHGB: 4.8 ± 1.4) in silt‐loam soils, where CH 4 emissions (6.3 ± 1.3) were greatly stimulated. For upland cropping systems, mostly by enhancing SOC sequestration, straw return (NGHGB: −3.4 ± 0.8, yield: −0.5 ± 0.6) and no‐tillage (NGHGB: −2.9 ± 0.7, yield: −0.1 ± 0.3) were more effective in warm climates. This study highlights the importance of carefully managing croplands to sequester SOC without sacrifice in yield while limiting CH 4 emissions from rice paddies.
Ziyin Shang, Mohamed Abdalla, Longlong Xia, Feng Zhou, Wenjuan Sun, Pete Smith (2021). Can cropland management practices lower net greenhouse emissions without compromising yield?. , 27(19), DOI: https://doi.org/10.1111/gcb.15796.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1111/gcb.15796
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access