Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Boosting particle swarm optimization by backtracking search algorithm for optimization problems

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2023

Boosting particle swarm optimization by backtracking search algorithm for optimization problems

0 Datasets

0 Files

English
2023
Swarm and Evolutionary Computation
Vol 79
DOI: 10.1016/j.swevo.2023.101304

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Amir Gandomi
Amir Gandomi

University of Techology Sdyney

Verified
Sukanta Nama
Apu Kumar Saha
Sanjoy Chakraborty
+2 more

Abstract

Adjusting the search behaviors of swarm-based algorithms during their execution is a fundamental errand for addressing real-world global optimizing challenges. Along this line, scholars are actively investigating the unvisited areas of a problem domain rationally. Particle Swarm Optimization (PSO), a popular swarm-based optimization algorithm, is broadly applied to resolve different real-world problems because of its more robust searching capacity. However, in some situations, due to an unbalanced trade-off between exploitation and exploration, PSO gets stuck in a suboptimal solution. To overcome this problem, this study proposes a new ensemble algorithm called e-mPSOBSA with the aid of the reformed Backtracking Search Algorithm (BSA) and PSO. The proposed technique first integrates PSO's operational potential and then introduces BSA's exploration capability to help boost global exploration, local exploitation, and an acceptable balance during the quest process. The IEEE CEC 2014 and CEC 2017 test function suite was considered for evaluation. The outcomes were contrasted with 26 state-of-the-art algorithms, including popular PSO and BSA variants. The convergence analysis, diversity analysis, and statistical test were also executed. In addition, the projected e-mPSOBSA was employed to evaluate four unconstrained and seven constrained engineering design problems, and performances were equated with various algorithms. All these analyses endorse the better performance of the suggested e-mPSOBSA for global optimization tasks, search performance, solution accuracy, and convergence rate.

How to cite this publication

Sukanta Nama, Apu Kumar Saha, Sanjoy Chakraborty, Amir Gandomi, Laith Abualigah (2023). Boosting particle swarm optimization by backtracking search algorithm for optimization problems. Swarm and Evolutionary Computation, 79, pp. 101304-101304, DOI: 10.1016/j.swevo.2023.101304.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

Swarm and Evolutionary Computation

DOI

10.1016/j.swevo.2023.101304

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access