0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe long-term durability of triboelectric nanogenerators (TENGs) remains a critical challenge for their practical deployment. Although approaches like reducing interfacial friction or contact duration can enhance durability, they often compromise electrical performance. The charge self-excitation method can improve the output performance. However, when it is introduced into the sliding mode with small capacitance change, it increases the complexity of the circuit and cannot solve the problem of charge attenuation caused by material wear. Herein, we propose a self-regulation strategy that concurrently controls the interface contact state and contact force. This approach synergistically combines the advantages of both sliding and contact-separation configurations, enabling the triboelectric materials to micro-slide and deform adaptively, ensuring stable dynamic interfacial contact under minimal normal pressure. Such a mechanism promotes strong electron cloud overlap at the microscale, thereby enhancing charge transfer efficiency. Compared to conventional TENGs, the self-regulating TENG achieves a 72.5-fold reduction in frictional force and a 13-fold increase in energy output. Furthermore, a wireless self-powered sensing system is integrated, achieving a power density of 242.4 mW/m 2 under real water flow conditions. The system maintains 97.6% of the initial output after 10 h of continuous operation, confirming the practical feasibility of the proposed approach. This work presents a universal method to enhance the electrical performance and durability of TENGs, paving the way for their broader application.
Yanrui Zhao, Yuming Feng, Qi Gao, Hengyu Li, Xin Guo, Jianlong Wang, Xinxian Wang, Lu Dong, Yang Yu, Zhong Lin Wang, Tinghai Cheng (2025). Boosting Output Performance of Triboelectric Nanogenerator via Interface Self-Regulation Strategy. , 8, DOI: https://doi.org/10.34133/research.0906.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2025
Authors
11
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.34133/research.0906
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access