0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis paper presents Artificial Neural Network (ANN) models for evaluating bond strength of deformed, plain and cold formed bars in low strength concrete. The ANN models were implemented using the experimental database developed by conducting experiments in three different universities on total of 138 pullout and 108 splitting specimens under monotonic loading. The key parameters examined in the experiments are low strength concrete, bar development length, concrete cover, rebar type (deformed, cold-formed, plain) and diameter. These deficient parameters are typically found in non-engineered reinforced concrete structures of developing countries. To develop ANN bond model for each bar type, four inputs (the low strength concrete, development length, concrete cover and bar diameter) are used for training the neurons in the network. Multi-Layer-Perceptron was trained according to a back-propagation algorithm. The ANN bond model for deformed bar consists of a single hidden layer and the 9 neurons. For Tor bar and plain bars the ANN models consist of 5 and 6 neurons and a single hidden layer, respectively. The developed ANN models are capable of predicting bond strength for both pull and splitting bond failure modes. The developed ANN models have higher coefficient of determination in training, validation and testing with good prediction and generalization capacity. The comparison of experimental bond strength values with the outcomes of ANN models showed good agreement. Moreover, the ANN model predictions by varying different parameters are also presented for all bar types.
Sohaib Ahmad, Kypros Pilakoutas, Muhammad Masood Rafi, Qaiser U. Zaman (2018). Bond strength prediction of steel bars in low strength concrete by using ANN. Computers and Concrete, an International Journal, 22(2), DOI: 10.12989/cac.2018.22.2.249.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2018
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Computers and Concrete, an International Journal
DOI
10.12989/cac.2018.22.2.249
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access