0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessTurbulence-induced vibrations pose substantial risks to aircraft structural integrity and flight stability, particularly in unmanned aerial vehicles (UAVs), where real-time impact monitoring and lightweight protection are critical. Here, we present a bioinspired twist-hyperbolic metamaterial (THM) integrated with a triboelectric nanogenerator (TENG) for simultaneously impact buffering and self-powered sensing. The THM-TENG protector exhibits tunable stiffness (40 to 4300 newtons per millimeter), ~70% impact energy absorption, and achieves a specific energy absorption of ~0.25 joules per gram at a weight of only 10 grams. Through triboelectrification, the protector converts mechanical energy into electrical signals, enabling real-time monitoring of impact loads up to 1000 newtons (≤5 hertz). Integrated with a microcontroller unit, wireless transmission, and alarm systems, THM-TENG demonstrates dual functionality in UAVs: mitigating vibration while providing real-time force monitoring, positioning, and early warning, all without external power sources. This work establishes a transformative framework for lightweight, multifunctional protective systems with applications in aerospace, robotics, and autonomous vehicles.
Xujiang Chao, Haoteng Hu, Jen‐Lien Lin, Xueyang Ge, Y. Wang, Lei Xie, Beichen Hu, Liang Meng, Shudong Yu, Fei Liang, Lehua Qi, Zhong Lin Wang (2025). Bioinspired twist-hyperbolic metamaterial for impact buffering and self-powered real-time sensing in UAVs. , 11(36), DOI: https://doi.org/10.1126/sciadv.adw6179.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2025
Authors
12
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1126/sciadv.adw6179
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access