Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Bayesian Information Sharing Between Noise And Regression Models Improves Prediction of Weak Effects

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Preprint
en
2013

Bayesian Information Sharing Between Noise And Regression Models Improves Prediction of Weak Effects

0 Datasets

0 Files

en
2013
arxiv.org/pdf/1310.4362

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Paul M Ridker
Paul M Ridker

Harvard University

Verified
Jussi Gillberg
Pekka Marttinen
Matti Pirinen
+5 more

Abstract

We consider the prediction of weak effects in a multiple-output regression setup, when covariates are expected to explain a small amount, less than $\approx 1%$, of the variance of the target variables. To facilitate the prediction of the weak effects, we constrain our model structure by introducing a novel Bayesian approach of sharing information between the regression model and the noise model. Further reduction of the effective number of parameters is achieved by introducing an infinite shrinkage prior and group sparsity in the context of the Bayesian reduced rank regression, and using the Bayesian infinite factor model as a flexible low-rank noise model. In our experiments the model incorporating the novelties outperformed alternatives in genomic prediction of rich phenotype data. In particular, the information sharing between the noise and regression models led to significant improvement in prediction accuracy.

How to cite this publication

Jussi Gillberg, Pekka Marttinen, Matti Pirinen, Antti J. Kangas, Pasi Soininen, Paul M Ridker, Mika Ala‐Korpela, Samuel Kaski (2013). Bayesian Information Sharing Between Noise And Regression Models Improves Prediction of Weak Effects.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Preprint

Year

2013

Authors

8

Datasets

0

Total Files

0

Language

en

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access