Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Autonomous decision making for solid-state synthesis of inorganic materials

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Preprint
en
2023

Autonomous decision making for solid-state synthesis of inorganic materials

0 Datasets

0 Files

en
2023
DOI: 10.48550/arxiv.2304.09353arxiv.org/abs/2304.09353

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Gerbrand Ceder
Gerbrand Ceder

University of California, Berkeley

Verified
Nathan J Szymanski
Pragnay Nevatia
Christopher J. Bartel
+2 more

Abstract

To aid in the automation of inorganic materials synthesis, we introduce an algorithm (ARROWS3) that guides the selection of precursors used in solid-state reactions. Given a target phase, ARROWS3 iteratively proposes experiments and learns from their outcomes to identify an optimal set of precursors that leads to maximal yield of that target. Initial experiments are selected based on thermochemical data collected from first principles calculations, which enable the identification of precursors exhibiting large thermodynamic force to form the desired target. Should the initial experiments fail, their associated reaction paths are determined by sampling a range of synthesis temperatures and identifying their products. ARROWS3 then uses this information to pinpoint which intermediate reactions consume most of the available free energy associated with the starting materials. In subsequent experimental iterations, precursors are selected to avoid such unfavorable reactions and therefore maintain a strong driving force to form the target. We validate this approach on three experimental datasets containing results from more than 200 distinct synthesis procedures. When compared to several black-box optimization algorithms, ARROWS3 identifies the most effective set of precursors for each target while requiring substantially fewer experimental iterations. These findings highlight the importance of using domain knowledge in the design of optimization algorithms for materials synthesis, which are critical for the development of fully autonomous research platforms.

How to cite this publication

Nathan J Szymanski, Pragnay Nevatia, Christopher J. Bartel, Yan Zeng, Gerbrand Ceder (2023). Autonomous decision making for solid-state synthesis of inorganic materials. , DOI: https://doi.org/10.48550/arxiv.2304.09353.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Preprint

Year

2023

Authors

5

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.48550/arxiv.2304.09353

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access