Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Automated Gold Nanorod Spectral Morphology Analysis Pipeline

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2024

Automated Gold Nanorod Spectral Morphology Analysis Pipeline

0 Datasets

0 Files

en
2024
Vol 18 (51)
Vol. 18
DOI: 10.1021/acsnano.4c09753

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Paul Alivisatos
Paul Alivisatos

University of Chicago

Verified
Samuel P. Gleason
Jakob C. Dahl
Mahmoud Elzouka
+8 more

Abstract

The development of a colloidal synthesis procedure to produce nanomaterials with high shape and size purity is often a time-consuming, iterative process. This is often due to quantitative uncertainties in the required reaction conditions and the time, resources, and expertise intensive characterization methods required for quantitative determination of nanomaterial size and shape. Absorption spectroscopy is often the easiest method for colloidal nanomaterial characterization. However, due to the lack of a reliable method to extract nanoparticle shapes from absorption spectroscopy, it is generally treated as a more qualitative measure for metal nanoparticles. This work demonstrates a gold nanorod (AuNR) spectral morphology analysis tool, called AuNR-SMA, which is a fast and accurate method to extract quantitative structural information from colloidal AuNR absorption spectra. To demonstrate the practical utility of this model, we apply it to three distinct applications. First, we demonstrate this model's utility as an automated analysis tool in a high-throughput AuNR synthesis procedure by generating quantitative size information from optical spectra. Second, we use the predictions generated by this model to train a machine learning model to predict the resulting AuNR size distributions under specified reaction conditions. Third, we apply this model to spectra extracted from the literature where no size distributions are reported and impute unreported quantitative information on AuNR synthesis. This approach can potentially be extended to any other nanocrystal system where absorption spectra are size dependent, and accurate numerical simulation of absorption spectra is possible. In addition, this pipeline could be integrated into automated synthesis apparatuses to provide interpretable data from simple measurements, help explore the synthesis science of nanoparticles in a rational manner, or facilitate closed-loop workflows.

How to cite this publication

Samuel P. Gleason, Jakob C. Dahl, Mahmoud Elzouka, Xingzhi Wang, Dana O. Byrne, Hannah Cho, Mumtaz Gababa, Ravi Prasher, Sean Lubner, Emory M. Chan, Paul Alivisatos (2024). Automated Gold Nanorod Spectral Morphology Analysis Pipeline. , 18(51), DOI: https://doi.org/10.1021/acsnano.4c09753.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

11

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1021/acsnano.4c09753

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access