Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Automated Cluster Elimination Guided by High-Density Points

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2025

Automated Cluster Elimination Guided by High-Density Points

0 Datasets

0 Files

en
2025
Vol 55 (4)
Vol. 55
DOI: 10.1109/tcyb.2025.3537108

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Witold Pedrycz
Witold Pedrycz

University of Alberta

Verified
Xianghui Hu
Yichuan Jiang
Witold Pedrycz
+3 more

Abstract

Determining the optimal number of clusters in cluster analysis without prior knowledge remains a critical and challenging task. Existing methods often depend on calculating clustering validity indices (CVIs), which increases complexity and may reduce efficiency. Furthermore, different CVIs frequently suggest varying optimal cluster numbers, complicating the selection process. To address these challenges, we propose a novel clustering algorithm, self-regulating possibilistic C-means (PCM) with high-density points (SR-PCM-HDP), which simplifies cluster number determination while improving clustering efficiency. First, the density-based knowledge extraction (DBKE) method is introduced to estimate an appropriate initial cluster number and identify high-density points. DBKE enhances the density peak clustering (DPC) algorithm by removing the need for a predefined density radius. Second, SR-PCM-HDP refines the clustering process by incorporating a parameter to balance the interactions between high-density points and cluster centers, reducing sensitivity to initial configurations and accelerating convergence. Third, the parameter adjustment mechanism in classical PCM is redefined to enable adaptive updates during SR-PCM-HDP iterations. This mechanism facilitates the gradual elimination of obsolete clusters and iterative cluster formation. The theoretical foundations of the SR-PCM-HDP cluster elimination mechanism are rigorously established. Experimental results validate the accuracy and effectiveness of SR-PCM-HDP in determining cluster numbers and ensuring clustering validity, particularly for datasets with overlapping or imbalanced distributions. Comparisons are conducted against 13 state-of-the-art algorithms, including fuzzy clustering, possibilistic clustering, and CVI-based cluster determination methods.

How to cite this publication

Xianghui Hu, Yichuan Jiang, Witold Pedrycz, Zhaohong Deng, Jianwei Gao, Yiming Tang (2025). Automated Cluster Elimination Guided by High-Density Points. , 55(4), DOI: https://doi.org/10.1109/tcyb.2025.3537108.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2025

Authors

6

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1109/tcyb.2025.3537108

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access