0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIntramolecular junctions in single-walled carbon nanotubes are potentially ideal structures for building robust, molecular-scale electronics but have only been studied theoretically at the atomic level. Scanning tunneling microscopy was used to determine the atomic structure and electronic properties of such junctions in single-walled nanotube samples. Metal-semiconductor junctions are found to exhibit an electronically sharp interface without localized junction states, whereas a more diffuse interface and low-energy states are found in metal-metal junctions. Tight-binding calculations for models based on observed atomic structures show good agreement with spectroscopy and provide insight into the topological defects forming intramolecular junctions. These studies have important implications for applications of present materials and provide a means for assessing efforts designed to tailor intramolecular junctions for nanoelectronics.
Min Ouyang, Jinlin Huang, Chin Li Cheung, Charles M. Lieber (2001). Atomically Resolved Single-Walled Carbon Nanotube Intramolecular Junctions. Science, 291(5501), pp. 97-100, DOI: 10.1126/science.291.5501.97.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2001
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Science
DOI
10.1126/science.291.5501.97
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access