0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessSintering semiconductor nanocrystals represents a possible low-cost route to creating functional bulk absorber layers for photovoltaic applications. Here we highlight the critical aspects of sintering CdTe tetrapods into smooth, dense, polycrystalline films that are capable of yielding >7% efficient solar cells with just ~500 nm thick active layers. Despite respectable performance, we find that there is room for improvement regarding the current state-of-the-art processing and device structure. Namely, `optimal' films/devices have exceptionally low photoluminescence yield, grain sizes on the order of 50-100 nm, a metastable ITO/CdTe hole-collecting contact, and CdTe that is not phase pure. Our findings further suggest that this approach to creating functional CdTe absorber layers has great potential beyond the already encouraging results reported in the literature.
Steven A. Hawks, Abdullah Saud Abbas, Paul Alivisatos (2016). Aspects of sintering CdTe nanoparticles into functional bulk absorber layers. , DOI: https://doi.org/10.1109/pvsc.2016.7749631.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2016
Authors
3
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1109/pvsc.2016.7749631
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access